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UCLETOEENeous reactions, we need to have an understanding of the reaction and
possible mechanisms in order to postulate the rate law in Step 6B. After study-
ing Chapter 10 on heterogeneous reactions, one will be able to postulate differ-
ent rate laws and then use Polymath nonlinear regression to choose the “best”
rate law and reaction rate parameters.

The procedure we should use to delineate the rate law and rate law
parameters is given in Table 5-1. | P 5=2

TABLE 5-1.  STEPS IN ANALYZING RATE DATA

1. Postulate a rate law. _
A.  Power law models for homogeneous reactions

‘*I’A’—_- kcav, —rA-—':kCZ C%
B. Langmuir-Hinshelwood models for héterogeneous reactions

kP, o kPP
=

(1 +K,P,+Pp)

!

" TIFK,P,

2. Select reactor type and corresponding mole balance.
A.  If batch reactor (Section 5.2), use mole balance on Reactant A

__dc,
A T4y

B. If differential PBR (Section 5.5), use mole balance on Product P (A — P)

(TE5-1.1)

P FP —
“"I‘A - _A-———W— vao/AW o ) (TES‘I.Z)

3. Process your data in terms of measured variable (e.g., Nu, Cy, or P,). If neces-
- sary, rewrite your mole balance in terms of the measured variable (e.g., P).

4. Look for simplifications. For example, if one of the reactants is in excess, assume
its concentration is constant. If the gas phase mole fraction of reactant A is small, set
e=(0. . : ' ,

5. For a batch reactor, calculate =T as a function of concentration C, to determine
reaction order. ' ' ' '
A. Differential analysis

Combine the mole balance (TE5-1.1) and power law model (TE5-1.3).

—ry = kC} (TE5-1.3)




ic, P5-3

“‘““‘c-i—t—‘ = kC'X ' (TE5-14)

and then take the natural log.

1n(—-€%) =In(-ry) =lnk+alnC,  (TE5-15)

(1) Find ——-c—i-té from C, versus ¢ data by

~ (a) Graphical method
(b) Finite differential method
(c) Polynominal ‘

dCy’ .
(2) Plot In (———-C—i—té) versus InCy and find reaction order o, which is the slope of

the line fit to the data.
(3)Find k. |
B. Integral method
For —r, = kC, the combined mole balance and rate law is

_dC, _

—4 = kC§ (TE5-1.4)

(1)Guess o and integrate Equation' (TES-1.4). Rearrange your equation to
obtain-the appropriate function of C,, which when plotted as a function of
time should be linear. If it is linear, then the guessed value of o is correct v
and the slope is the spec1ﬁc reaction rate, k. If it is not linear, guess again
for o. If you guess oo = 0, 1, and 2 and none of theses orders ﬁt the data,
proceed to nonlinear reression.

(2) Nonlinear regression (Polymath)

Integrate Equation (TE5-1.4) to obtain

1-o) (I-o) ‘

= l[ Cao —Ca ] fora®1  (TE5-16)

k (1-w) ,
Use Polymath regression to find o and k. A Polymath tutorial on regression
with screen shots is shown in the Chapter 5 Summary Notes on the
CD-ROM and web. A

6. For differential PBR calculate —r’, as a function of C, or P,

, UoCp
A. Calculate —p = \
A AW

B.  Choose model (see Chapter 10), e.g.,

as a function of reactant concentration, C,.

, kP,
= .
A 1+K,P,

C.  Use nonlinear regression to find the best model and model parameters. See
example on the CD-ROM Summary Notes using data from heterogeneous
catalysis; Chapter 10. _

7. Analyze your rate law model for “goodness of fit.” Calculate a correlation coefficient.
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5.2.1D Finding the Rate Law Parameters

Now, using either the graphical method, differentiation formulas, or the poly-
nomial derivative, the following table can be set up: :

Time ty 4 t, ty

Concentration Cap Ca Cys Cas

, Derivdtive _ 195 - di‘ - é_c_é — & .
: at ) dt ), dt |, dt |

The reaction order can now be found from a plot of In(—dC,/ dt) as a
function of InC,, as shown in Figure 5-1(a), since

- dt

Before solving an example problem review the steps to determine the reaction
rate law from a set of data points (Table 5-1).

m(— @]zlnkA+ach (57

Example 5-1 Determining the Rate Law
- . The reaction-of triphenyl .methyl’Chlori'de (trityl) (A) arid methanol (B) -
| 0

I
(CeHs), CCL+CH,0H —>(C4H ), CCH, +HCI

A + B - C + D .




wing the Algorithm

Sec. 5.2  Batch Reactor Data

was carried out in a solution of benzene and pyndme at 25°C. Pyridine reacts with

- HCI that then precipitates as pyridine hydrochloride thereby making the reaction
irreversible.

The concentration-time data in Table E5-1.1 was obtained in a batch reactor
A - TaBLE E5-1.1. Raw DAtaA
Time (min) | | 0 50 100 150 200 250 300
Concentration of A (mol/dm?) x 103 } 50 38 306 256 222 195 174
(At1=0, C, = 0.05 M)

The initial concentration of methanol was 0.5 mol/dm?.

Part (1) Determine the reaction order with respect to triphenyl methyl chloride.

Part 2) In a separate set of experiments, the reaction order wrt methanol was
found to be first order. Determine the specific reaction rate constant.

Solution

Part (1) Find reaction order wrt trltyl
Step 1  Postulate a rate law.

= kCiCh | (B5-1.1)

Step 2 Process your data in terms of the measured varlable, which in this
case is Cy,. .

Step 3 Look for simplifications. Because the concentration of methanol is 10
times the initial concentration of triphenyl methyl chloride, its concentra-
tion is essentially constant

CB = CBO ’ : (E5“1.2)
Substituting for C in Equation (E5-1.1) |
—'rA = kC%O CX
|2
—ry =K C - (B5-1.3)

Step4  Apply the CRE algorithm
Mole Balance

dZA raV (E5-1.4)
Rate Law
=K C (E5-1.3)
Stoichiometry: Liquid
V=V, (BE5-1.4)
c= 0
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Combine: Mole balance, rate law, and stoiéhiometry_

dc, o |
—A=k'Ca E5-1.5
= A ( )

Taking the natural log of both sides of Equation (E5-1.5)

In [—-f%é] =¥ +0lnC, (B5-1.6)

The slope of a plot of In [__6%] versus In C, will yield the reaction

order o with respect to triphenyl methyl chloride (A).

Step 5  Find [—c%“] as a function of C, from concentration-time data.

~ We will find (—dTC;A) by each of the three methods just discussed, the

graphical, finite difference, and polynomial methods.
- Step 5A.1a Graphical Method. We now construct Table E5-1.2.

TABLE E5-1.2 PROCESSED DATA

AC, 4 dC 4
N | Yy X 10 -—-Eté X 10
¢ (min) C, x 103 (mol/dm?) (mol/dm? - min) (mol/dm3 - min)
0 o 50 ' 3.0
: R i i
50 - 38 1.86
| 1.48
100 30.6 1.2
1.00°
150 25.6 0.8
, - _ 0.68
200 ~ 222 0.5
0.54
250 19.5 0.47
| 0.42
300 17.4

ACy _ _Cpy=Cyy - _(38 - 50

ok W - ) X 1072 =0.24 X 107> =2.4 X 10™*(mol/dm’ - min)

The derivative —dC,/dt is determined by calculating and plotting (—AC,/Af) as a
function of time, ¢, and then using the equal-area differentiation technique (Appen-
dix A.2) to determine (-dC,/df) as a function of C,. First, we calculate the ratio
(-AC,/Af) from the first two columns of Table E5-1.2; the result is written in the
third column. Next we use Table E5-1.2 to plot the third column as a function of the



first column in Figure E5-1.1 [i.e., (-ACA/At) versus f]. Using equal-area differenti-
ation, the value of (~dC,/dr) is read off the figure (represented by the arrows); then
it is used to complete the fourth column of Table E5-1.2. P 5 ?

3

2.5

2
-dC, X 10
dt 1.5
-AC, X 10*
At 1
mol
dm? min 5

0 50 100 150 300 250 300 350
t (min)
Figure E5-1.1 Graphical differentiation.

Steb 5A1b Fiﬁite Di‘fféi'énceMetl'ibd.uWe'now-_' calculate (dCA/dt) usihg the finite
difference formulas [i.g., Equations (5-8) through (5-10)].

) ‘t=0

dt 2At

_[—3(50)+4(38) —30.6] X 10~°
| 100
=-2.86 x 10~ mol/dm? - min

_“% X 10* = 2.86 mol/dm? - min

£=50 (d_cé) _Cay=Cpo _ (30.6—50) X 10~°
dt )y 2A¢ 100

=-1.94 x 10~ mol/dm? - min



Polymath turorial
r fitting data can
be found on the

imrary Notes on

the CD.

t=iOO (EZ_C_‘.*) _CAB Ca1_ (25’."'6';38)}( 1073 o R $-jq
dt / 2At 100 .
=-1.24 x 10~* mol/dm3 - min
t=150 (@) - CA4_CA24: (22.2—30.6) X 1073
dt Js 2At 100

=-0.84 x 10‘4 mol/dm? -

dC _Cas—Cas _ (19.5-25. 6)><10
t =200 ——é) A3 A%
(dt A 2At 100

=-0.61 x 10 mol/dm? - min

¢ 2250 (CL%) _Cas=Cas_ (174-222) X 10
dt s 24t 100
=-0.48 x 10 mol/dm3 - min
£ =300 (i(}é) _ Caa—4Cas+3C6 _ [22.2-4(19.5) +3(17.4)] X 10
‘ dt Js 2At 100

=-0.36 X 10 mol/dm? - min

Step SA.1c Polynomial Method. Another method to determine (dC4/dt) is to fit the
concentration of A to a polynomial in time and then to differentiate the resulting
polynomial.

We will use the Polymath software package to express concentration as a function
of time. Here we first choose the polynomial degree (in this case, fourth degree) and
then type in the values of C, at various times ¢ to obtain

Ca=0.04999 — 2.978 x 107 + 1.343 x 10762 - 3.485 x 10573 + 3.697 x 10-12#4
© (B5-1.7)

>CA is in (mol/dm3) and £ i$ in minutes. A plot of CA versus ¢ and the coxrespondmg '
fourth-degree polynomlal fit are shown in Figure E5-1.2.

TaBLEE5-13 POLYMATH QUTPUT

Do%D g

. . o o047 N\ Concentration of Triphenyl Methyl Chloride
Linsar Regression Report 0043 as Function of Time
Model: CA=al+ at*t+aZ*"2 + ad*"3 + ad*™4 ’ ) ’
: : 0.040
Yarighle Value 95% confidence 0.037
al 0.0499903 © 3.1E-04 :
al ~2.978E-04 1.762E-05 0.034
a2 1.343E-06 2.72E-07 .
a3 -3, 485E~09 l.awge-09 0030
ad 3.697E-12 2.347E-12 D037
0024 | |o CA
0020
001? - 3 1 1 4 1 1 § { ¢

D
] 300 60 90 - 120 180 180 210 240 270 300
t (mim)

Figure E5-1.2 Polynomial fit.
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| P. $=il
Differentiating Equation (E5-1.7) yields

4Ca X 10% = -0.2987 + 0.002687¢ — 1.045 x 1052 + 1.479 x 1034 (E5-1.8)
Note: You can also obtain Equation (E5-1.9) directly from Pdlymath.

To find the derivative at various times, we substitute the appropriate time into
Equation (E5-1.8) to arrive at the fourth column in Table E5-1.4 and multiply by
(-1). We can see that there is quite a close agreement between the graphical tech-
nique, finite difference, and the polynomial methods. '

TaBLE E5-14.  SUMMARY OF PROCESSED DATA

Graphical Finite Difference Polynominal
_9C X 10,000 _4Ca x 10,000 _4Cy x 10,000

dt dt C, x 1,000

t(min)  (mol/dm? - min) (mol/dm? - min) (mol/dm3 - min) (mol/dm3)
0 3.0 2.86 298 50
50 1.86 1.94 1.88 38
100 - 120 1.24 1.19 30.6
150 0.80 0.84 0.80 _ 25.6
200 068 - 0.61 0.60 ' 222
250 - 0.54 0.48 0.48 19.5
300 0.42 0.36 0.33 17.4

We will now plot columns 2, 3, and 4 (-—C%‘ X 10, OOO) as a function of"

column 5 (C4 % 1,000) on log-log paper as shown in Figure E5-1.3. We could also
substitute the parameter values in Table E5-1.4 into Excel to find o and £’. Note that-
most of the points for all methods fall virtually on top of one anotheér.
From Figure E5-1.3, we found the slope to be 2.05 so that the reaction is said
to be second order wrt triphenyl methyl chloride. To evaluate k’, we can evaluate the
derivative at Cy, = 20 X 103 mol/dm3, which is

(-‘fgé) ~ 0.5 x 10~ mol/dm® - min (E5-1.9)
dt ), |
then »
(_‘_?EA)
P o= ___...?_t__e - (E5-1.10)
c2,

_ 05X 10 *mol/dm’ - min

(20 X 10 °mol/dm’)’

= 0.125 dm?® / mol - min

As will be shown in Section 5-1.3, we could also use nonlinear regression on Equa-
tion (E5-1.7) to find k"

K =0.122 dm>3/mol - min | (B5-1.11)



Collection and Analysis of Rate Data  Chap. 5

PS=i2

# Graphical
’ ® Finite

dCa x 104 ) A Polynomial

dt

1
mol -dC 1.99
A .

dm?® min = dt.“OJBCA

0.1 : : -
10 100
Ca x 103 (mol/dm3)

Figure E5-1.3 Excel plot to determine o and k.

The Excel graph shown in Figure E5-1.3 gives 0. = 1.99 and ¥’ = 0.13 dm3mol -
min. We could set o = 2 and regress again to find &’ = 0.122 dm?%mol - min.

ODE Regression. There are techniques and software becoming available whereby
an ODE solver can be combined with a regression program to solve differential
equations, such as ‘

-—A=ricy  (B515)

to find k, and o from concentration—time data.

_Pax;t (2) The reaction was said-to be first order Wrt methanol, B=1,
K = Chok= Cgok (B5-1.12)

Assuming Cg,is constant at 0.5 mol/dm3‘énd solving for k yields

3
0.1227._(_1?_‘2_'_
- mol-min

p=k _
Ceo gsmol
dm

k = 0.244 (dm3/mol)? / min

The rate law is

—r, = [0.244(dm*/mol)’/min]C2 C, (ES-1.13)
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The idea is to
range the data.so
that a linear
relationship is

" obtained.

Sec. 0.2 Balch Heaclor vawa

out not to be linear, such as shown in Figure 5-6, we would say that the
proposed reaction order did not fit the data. In the case of Figure 5-6, we
would conclude the reaction is not second order. , . ) S’;i 5 ’

It is important to restate that, given a reaction rate law, you should be
able to choose quickly the appropriate function of concentration or conversion
that yields a straight line when plotted against time or space time.

Example 5-2 Integral Method of CRE Data Analysis

Use the integral methbd to confirm that the reaction is second order wrt triphenyl
methyl chloride as described in Example 5-1 and to calculate the specific reaction
- rate K/

Trityl (A) + Methanol (B) — Products

- Solution

Substituting for o, = 2 in Equation (E5-1.5)

dC,
——A =} Cq E5-1.5
— A ( )
we obtain:
dC, ’
—ZA-pci | E5-2.1
| a o D
Integrating with Cy = Cppat £ =0 »
171 1 j} :
= = — — — E5-2.2
P o) (B522)
Rearranging
1 1 ‘
L=t + k't (E5-2.3)
Cy Cup

We see if the reaction is indeed second order then a plot of (1/C,) versus ¢t should
be linear. The data in Table E5-1.1 in Example 5-1 will be used to construct Table
E5-2.1.

TaBLE E5-2.1.  PROCESSED DATA -

t (min) 0 50 100 150 200 250 300
C, (mol/dm?) 005 0038 00306 0.0256 0.0222 00195 0.0174
1/C, (dm*mol) 20 263 327 391 45 513 575

In a graphical solution, the data in Table E5-2.1 can be used to construct a plot of
1/C, as a function of 7, which will yield the specific reaction rate k’. This plot is
shown in Figure E5-2.1. Again, one could use Excel or Polymath to find &’ from the

data in Table E5-2.1. The slope of the line is the specific reaction rate &’
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70.0 . P S ‘é’
= 0,12t + 20.12
60.0 A :
50.0 //
1400
cA /
30.0

o 20.0

10.0

0-0 - 1 1 i H ¥ 1
0 50 100 150 200 250 300 350

t (min)
Figure E5-2.1 Plot of the reciprocal of C, versus ¢ for a second-order reaction.

- We see from the Excel analysis and plot that the slope of the line is 0.12 dm3/mol - min.

dm’
=012 —2
mol - min
Calculating &,
= kK _0.12 dm’>/mol/min _ 0.24( dms)z/min
Cso 05  moldm® mol
The rate law is |
dm’ 2 2y
—ry =024 — in |C,C
¥ [ (mol)/mm]- 2 Cs

‘We note the integral method tends to smooth the data.
Polymath

An alternate computer solution would be to regress —C}— versus t with a software
A

- package such as Polymath.

11 Ly (B5-2.4)
Can Cao

Let CA inverse = El—, ap = —1—, and a; = K’ and then enter the data in Table E5-2.1.
- La A0 ‘

Linear Regression Report

Model: CAinverse = a0 + al*t

Variable Value 95% confidence
a0 20.117525 0.225264
| al 0.124794 0.0012495 ]

From the Polymath output, we obtain &’ = 0.125 dm*/mol - min, which yields
k = 0.25 dm3/mol - min. We shall discuss regression in Example 5-3.
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Nor-linear Regression, 48 bz A4 |

We now integrate Equation (5-6) to give o P@ §— ‘i 7
@hst—vfci' d 1— 1—
——— o CAOOL'—CA OL:(I_OL)]CZ‘ ’
<F kq (56)

Rearranging to obtain the concentration as a function of time, we obtain
Co=[Cay"~ (1 —a)k]0=) (5-18)

Now we could use Polymath or MATLAB to find the values of o and k that
would minimize the sum of squares of the differences between the measured
and calculated concentrations. That is, for N data points,

N N : 2
2= (Cppi— Cppi)? = ZA[CAW ~[Cao"— (1 - a)ktl-]““““)] (5-19)
T sl Slealdel
we want the values of a and k& that will make s2 a minimum.

If Polymath is used, one should use the absolute value for the term in.
brackets in Equation (5-19), that is,

n 2
2= 3| Cap—{(abSICl" — (1 - ) k13 (5-20)
i=1 : .
Another way to solve for the parameter values is to use time rather than
concentrations: I
1-a 1~a
f = Cao —Ca (5-21)
Kl =) i -
That is, we find the values of k and o that minimize
N . N C,l—a__ CITOL 2
2 = t.o—t.)2 = t,——al AL 5-22
i=1 i=1

Finally, a discussion of wéighted least squares as applied to a first-order reac-
tion is provided in the Professional Reference Shelf R5.2 on the CD-ROM.

Example 5-3 Use of Regression to Find the Rate Law Parameters

We shall use the reaction and data in Example 5-1 to illustrate how to use regression
to find o and k', - :

(CgH;);CC1 + CH;0H—3(C4Hy),COCH, + HC1

A + B - C‘+D




The 'Po'lymath regression program is included on the CD-ROM. Recalliﬁg Equation

EL9 | RS-i8
dC, o o
——2=f'C E5-1.5
dt A ( 1)
~and integrating with the initial condiﬁon when £ =0 and C, = Cyg for oo # 1.0
Cv(1 a) C(l 0‘) .
t= E5-3.1
» K 1-a) ( )

Substituting for the initial concentration Cyq = 0.05 mol/dm3

_ 1(0. 05)4 "~ ¢~
K (1-a)

(B5-3.2)

Let’s do a few calculations by hand to illustrate regression. We will first assume a
value of o and & and then calculate ¢ for the concentrations of A given in Table
E5-1.1. We will then calculate the sum of the squares of the difference between the
measured times ¢,, and the calculated times (i.e., s?). For N measurements,

N 1—a l—a 2
Cy —C
§ _—Z(tmz_tcz) = Z(ml %&A)—')
i=1 '

Our first guess is going to be o =3 and k"= 5, with Cao = 0.05. Equation (E5-3.2)

» becomes _
_ 171 1 }_ 1[ 1 :l
t, = - — 400 5-3.3
© 2k'LCz CA:(Z) 10 C E )

-We now. make the..calculaﬁons for each measuremegt.of concentration and fill in. .
columns 3 and 4 of Table E5-3.1. For example, when C, = 0.038 mol/dm? then

tc,.——l[ 1 —400] 29.2 min

10L(0.038)*

which is shown in Table E5-3.1 on line 2 for guess 1. We next calculate the squares
of difference (f,,; — #.1)* = (50 — 29.2)> = 433. We continue in this manner for points
2, 3, and 4 to calculate the sum s2 = 2916.

After calculating s? for &= 3 and k' = 5, we make a second guess for o and
¥'. For our second guess we choose oo = 2 and £’ = 5; Equation (E5-3.2) becomes

t, = _1_,[_1_ - _I__J - l[ 1 _ 2():| (E5-3.4)
K'LCy Cypold 5LC, \

We now proceed with our second guess to find the sum of (z,, - £.)? to be 52 = 49,895,
which is far worse than our first guess. So we continue to make more guesses of o
and k' and find s2. Let’s stop and take a look at ¢, for guesses 3 and 4.
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We shall only use four points for this illustration. P* S5-Il 7
TABLE E5-3.1. REGRESSION OF DATA
Guess 1 Guess 2 ~ Guess 3 © Guess 4
Original Data o =3 oa=2 ' o=2 o=2
k=5 K=5 ¥K=02 ¥ =0.1
t Cyx103 ' o
(min) molVdn?®) | fc  (ta=10% [tc =1 | fo (=1 | to  (tu—t0)?
1] 0 50 0 0 0 0 0o 0 0 0
2] 50 38 292 433 126 2,375 | 316 339 63.2 174
31100 306 667 1,009 |25 9499 | 634 1340 |1268 718
41200 . 222 163 1,375 | 5.0 38,622 |1252 5,591 250 2,540
s? = 2916 s2 = 49,895 - $2=7270 §2=3432

We see that (k" = 0.2 dm3/mol - min) underpredicts the time (e.g., 31.6 min versus
50 minutes), while (" = 0.1 dm3/mol - min) overpredicts the time (e.g., 63 min ver-
sus 50 minutes). We could continue in this mariner by choosing ¥’ between 0.1 < k¥’
< 0.2, but why bother to go to all the trouble? Nobody has that much time on their
hands. Why don’t we just let the Polymath regression program find the values of ¥’
and o that will minimize s2? _ _ '

The Polymath tutorial on the CD-ROM shows screen shots of how to enter
the raw data in Table E5-1.1 and to carry out a nonlinear regression on Equation
(E5-3.1). For Cyy = 0.05 mol/dm3, -that is, Equation (E5-3.1) becomes

;= 1000507 - c{
4 (1—-w)
We want to minimize the sum to give oo and £’ |
N N i. l—o -« . . .
2Ny ol 005" -, T
= f.—t.) = t.— 5-22
# = 2 = 3 [ = 522

_TABLE E5-3.2. RESULTS OF 1sT REGRESSION ; TABLE E5-3.3.  RESULTS OF 2ND REGRESSION

POLYMATH Resuits
Example 5-3 Use of Regression to Find Rate Law Parameters 08-05-2004

Nonlinear regression (L-M)
‘Model: t = (.05/(1-a)-CaN1-a))/(k*(1-a))

POLYMATH Results
Example 5-3 Use of Regression to Find Rate Law Parameters 08-05-2004

Nonlinear regression (L-M)
Moadal: t= (0541-2)-Car(1-2))/{k*(1-2))

. Variable Ini guess - _Value 95% confidence- Variable Ini guess Value 95% confidence
a 3 2.04472 0.0317031 k © G.1253404 ~ 7.022E-04
k 0.1 0.1467193 0.0164118

Nonlinear regression settings

Nonlinear regression settings
Max # itarations = 84

Max # lterations = 64

. Precision
Preclsion : R~2 = 0.9998978
R~2 = 0.9995717 .

N : _ R*2adj = 0.8998978
R"2adj = 0.999965 " = 0381881
Rmsd = 0.2011604 Rms = U

Variance = 0.3965618 variance = 1.1926993
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~ The results shown are -
a=2.04
k' =0.147 dm®/mol - min

a=20 )
k' =0.125 dm>/mol - min

1
We shall round off o to make the reaction second order, (ie., o = 2.00). Now hav-

ing fixed o at 2.0, we must do another regression [cf. Table E5-3.3] on k’ because
the &’ given in Table E.5-3.1 is for o = 2.0447. We now regress the equation

= i[i_._.l__]
k, CA CAO

and find ¥ = 0.125 dm*mol - min.
, 342
=K _ 925 (dm ) /min
Cao mol

We note that the reaction order is the same as that in Examples 5-1 and 5- 2; how-
ever, the value of k is about 8% larger.

Model Discrimination. One can also determine which model or equatlon
best fits the experimental data by comparing the sums of the squares for each
model and then choosing the equation with a smaller sum of squares and/or
carrying out an F-test. Alternatively, we can compare the residual plots for
each model. These plots show the error associated with each data point, and
one looks to see if the error is randomly distributed or if there is a trend in the
error. When the error is randomly distributed, this is an additional indication -

- that the correct rate law has been chosen. An example of model discrimination
using nonlinear regression is given on the CD-ROM in Chapter 10 of the Sum- .
mary Notes.

5.3 Method of Initial Rates

The use of the differential method of data analysis to determine reaction orders
and specific reaction rates is clearly one of the easiest, since it requires only
:d when reactions  one experiment. However, other effects, such as the presence of a significant
are reversible  reperse reaction,- could render the differential method ineffective. In these
cases, the method of initial rates could be used to determine the reaction order
and the specific rate constant. Here, a series of experiments is carried outat.
different initial concentrations, C,,, and the initial rate of reaction, —Fpgs 18
determined for each run. The initial rate, —#,,, can be found by differentiating
* the data and extrapolatmg to zero time. For example, in the Trityl-Methanol
reaction shown in Example 5-1, the initial rate was found to be 0.00028
mol/dm® - min. By various plotting or numerical analysis techniques relating
—7 a0 t0 Cyq, We can Obtain the appropriate rate law. If the rate law is in the form

. — s
—7a0 = kCypy

the slope of the plot of In(—r,,) versus InC,, will give the reaction order o.
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Example 5-3 Method of Initial Rates in Solid-Liquid Dissolution Kinetics

———— The dissolution of dolomite, calcium magnesium carbonate, in hydrochloric acid is
a reaction of particular importance in the acid stimulation of dolomite oil reservoirs.4
The oil is contained in pore space of the carbonate material and must flow through
the small pores to reach the well bore. In matrix stimulation, HCI is injected into a

well bore to dissolve the porous carbonate matrix. By dissolving the solid carbonate

the pores will increase in size, and the oil and gas will be able t6 flow out at faster
rates, thereby increasing the productivity of the well.5 The dissolution reaction is .

—_— 4HCl + CaMg(CO5),—Mg?* + Ca2* +4CI~ + 2CO, + 2H,0

—— spectrophotometer measurements of the calcium and magnesium ions.

' Determine the reaction order with respect to HCI from the data presented in

Figure ES-3.1 for this batch reaction. Assume that the rate law is in the form given

——— by Equation (5-1) and that the combined rate law and mole balance for HCI can be
given by Equation (5-6).

The concentration of HCI at various times was determined from atomic-absorption

e — : Run1 , Run2
4.0000‘\ . 1.0000Peg—T
3.9930} | 0.8990}
% 3ges0 nN ¢ 0.9980 )
' i 4 N HCI 3] tNHCH]
. 3.9970 - 0.9970
——  39960L 0.9960L_ ‘
. 0 2 3 6 8 o 2 4 6 8
E— ~t {min) : t {min)

- {a) | | (b)
Figure E5-3.1 Concentration-time data.

~——  Solution

——— Evaluating the mole balance on a constant-volume batch reactor at time ¢ = 0 gives

m dC, o
{ _ [—— —ZZEJ = ~(ruc)o = kCycyo (E5-3.1y =
_ 0

% Paper House
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Taking the log of both sides of Equation (E5-3.1), we have»

In {— dC“C‘) = lnk + o In Cyqy g (E5-3.2)
dt 0 '

The derivative at time ¢t = 0 can be found from the slope of the plot of concentra-
tion versus time evaluated at ¢ = 0. Figure E5-3.1(a) and (b) give

4 N HCI solution I N HCl solution

_3.9982 —4.0000 o
S—0 | | HCL0
—ryct0 = 3.6 X 104 g mol/L - min

0.9987 — 1.0000
6—0
—TycL0.= 22X 104 g mol/L - min

“ryco =

Converting to a rate per unit area, —rj, and to seconds (30 cm? of solid per liter of
-solution), the rates at 1 N and 4 N become 1.2 X 10-7 mol/cm?-s and

2.0 X 1077 mol/cm?- s, respectively. We also could have used either POLYMATH
‘or the differentiation formulas to find the derivative at ¢ = Q.

If we were to continue in this manner, we would generate the followmg data set.

TABLE 5-3. _
Crics0 §mol/iifep ' |1.o 40 20 01 05

~rho (mollem?-5) X 107 | 12 20 136 036 074

These data are plotted on Figure ES-3.2. The slope of this ln-ln plot of —rjcy o ver-
sus Cycy o shown in Figure E5-3.2 gives a reacuon order of 0.44. The rate law is

—Fhero = kCriot (E5-3.3)

10

)

g mol
cm2.8
o
]

~ciox 107(

~ |
CH_Cl( %‘I’E‘? )

Figure ES-3.2 Initial rate as a function of initial HCl concentration.

e ————————
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5-7 Labomtorél Peacj'oh;

Easy to construct

Good-fluid solid

L — contact

5.7.1 Integral (Fixed-Bed) Reactor

One advantage of the integral reactor is its ease of construction (see ——
Figure 5-14). On the other hand, while channeling or bypassing of some of
the catalyst by the reactant stream may not be as fatal to data interpretation in
the case of this reactor as in that of the differential reactor, it may still be a ——

problem.

vl

Figure 5-14 Integral reactor.

5.7.2 Stirred Batch Reactor

In the stirred batch reactor the catalyst is dispersed as a slurry, as shown '
in Figure 5-15. Although there will be better contacting between the catalyst -

| 4

and the fluid in this reactor than either the differential or integral reactors, ——

there is a sampling problem in this reactor.

|
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{

Figure 5-15 Stirred bafch reactor. [From V. Weekman, AIChE J. 20, 833, (1974)
with permission of the AIChE. Copyright © 1974 AIChE. All rights reserved.]
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- mass transfer
resistance

E— One of the best
reactors for
—isothermal operation

Minimizes external -

v

' 5.7.3 Stirred Contained Solids Reactor (SCSR)

Although there are a number of designs for contained solids reactors, all

are essentially equivalent in terms of performance. A typical design is shown
in Figure 5-16

.

%
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Figure 5-16 Stirred contained solids reactor. [From V. Weekman, AIChE J. 20,

833, (1974) with permxssxon of the AIChE. Copynght © 1974 AIChE. All rights
reserved.]

574 Continuo_us-Stirred Tank Reactor (CSTR)

The CSTR reactor (Figure 5-17) is used when there is significant catalyst
decay. Fresh catalyst is fed to the reactor along with the fluid feed, and the cat-

Figure 5-17 [From V. Weekman, AIChE J. 20, 833, (1974) with permission of
the AIChE. Copyright © 1974 AIChE. All rights reserved.]
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alyst leaves the reactor in the product stream at the same rate at which it is fed,
to offset catalyst decay with time,

5.7.5 Straight-Through Transport Reactor

Commercially, the transport reactor (Figure 5-18) is used widely in the -

production of gasoline from heavier petroleum fractions. In addition, it has

found use in the drying of grains. In this reactor, either an inert gas or the reac-

tant itself transports the catalyst through the reactor.

Best for catalyst : B

i
o ?}'?? :

5.7.6 Recirculating Transport Reactor B

By recirculating the gas and catalyst through the transport reactor (Figure

5-19), one can achieve a well-mixed condition provided that the recirculation
rate 1s large with respect to the feed rate.




